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Abstract. State-of-the-art machine learning algorithms can be fooled
by carefully crafted adversarial examples. As such, adversarial examples
present a concrete problem in AI safety. In this work we turn the tables
and ask the following question: can we harness the power of adversarial
examples to prevent malicious adversaries from learning identifying in-
formation from data while allowing non-malicious entities to benefit from
the utility of the same data? For instance, can we use adversarial exam-
ples to anonymize biometric dataset of faces while retaining usefulness
of this data for other purposes, such as emotion recognition? To address
this question, we propose a simple yet effective method, called Siamese
Generative Adversarial Privatizer (SGAP), that exploits the properties
of a Siamese neural network to find discriminative features that convey
identifying information. When coupled with a generative model, our ap-
proach is able to correctly locate and disguise identifying information,
while minimally reducing the utility of the privatized dataset. Exten-
sive evaluation on a biometric dataset of fingerprints and cartoon faces
confirms usefulness of our simple yet effective method.

1 Introduction

Large-scale datasets enable researchers to design and apply state-of-the-art ma-
chine learning algorithms that can solve progressively challenging problems. Un-
fortunately, most organizations release datasets rather reluctantly due to the
excessive amounts of sensitive information about participating individuals.

Ensuring the privacy of subjects is done by removing all personally iden-
tifiable information (e.g. names or birthdates) – this process, however, is not
foolproof. Correlation and linkage attacks [25,15] often identify an individual
by combining anonymized data with personal information obtained from other
sources. Several such cases have been presented in the past, e.g. deanonymization
of users’ viewing history that was published in the Netflix Prize competition [25],
identifying subjects in medical studies based on fMRI imaging data [9], and
linking DNA profiles of anonymized participants with data from the Personal
Genome Project [32].

Typical approaches to countering the shortcomings of anonymization tech-
niques leverage data randomization. While randomizing datasets with differen-
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Fig. 1. Basic functionality of the proposed Siamese Generative Adversarial Privatizer:
given an original face image, the privacy filter generates a privatized image. The original
identity is hidden, at the same time other useful features, e.g. facial expression, are
preserved. Siamese discriminator identifies the discriminative features of the images.

tial privacy [7] provides much stronger privacy guarantees, the utility of ma-
chine learning models trained on such randomized data is often significantly
impaired [30,16,18]. We therefore believe that there is an ever increasing need
for new privatization methods that preserve the value of the data while protect-
ing the privacy of individuals.

The above privacy problem becomes critical when dealing with sensitive bio-
metric and medical images. Several breakthrough applications of computer vi-
sion have been proposed in this domain: [12] used machine learning algorithms to
parcellate human cerebral cortex, [29] utilized convolutional networks to detect
arrhythmia, and [8] used machine learning to realize a precision medicine system.
These applications, though critical for the advancement of the domain, rely on
the access to highly sensitive data. This calls for novel privatization schemes that
allow for the publication of images containing medical and biometric information
without sacrificing the utility of the applications discussed above.

1.1 Our contributions

In this work, we take a new approach towards enabling private data publishing.
Instead of adopting worst case, context-free notions of statistical data privacy
(such as differential privacy), we present a novel framework that allows the pub-
lisher to privatize images in a context-aware manner (Fig. 1). Our framework
builds up on the recent work [17] where they propose a Generative Adversarial
Privacy (GAP) method that casts the privatization as a constrained minimax
game between a privatizer and an adversary that tries to infer private data. The
approach we propose here is focused on biometric images and exploits a Siamese
neural network architecture to identify image parts that bear the highest dis-
criminative power and perturb them to enforce privatization. Contrary to other
works that quantify privacy in a subjective manner using user surveys [28], we
define here empirical conditions our privatizer needs to fulfill and propose met-
rics that allow to evaluate the privacy-utility trade-off we aim to explore. Finally,
we present the results of our experiments on datasets of fingerprints and cartoon
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faces. Our results show that the proposed framework prevents an attacker from
re-identifying privatized data while leaving other important image features in-
tact. We call this approach Siamese Generative Adversarial Privatizer (SGAP).

To summarize our contributions are twofold:

– a novel privatization method that uses a Siamese architecture to identify
identity-discriminative image parts and perturbates them to protect privacy,
while preserving the utility of the resulting data for other machine learning
tasks, and

– an empirical data-driven privacy metric (c.f. Section 4.2) based on mutual
information that allows to quantify the privatization effects on biometric
images.

1.2 Paper outline

The remainder of this paper is organized as follows. In Sec. 2, we provide a brief
survey of recent relevant works. In Sec. 3, we present the architectural details
of our SGAP model. The main results of our paper are presented in Sec. 4.
We conclude our paper in Sec. 5.

2 Related Work

Privatization of data has been an active area of research with multiple works
touching on this subject [18,30,16,1]. Our approach extends the concept of context-
independent data privatization by incorporating context-dependent information
as an input to the privatization algorithm. More precisely, it identifies the dis-
criminative characteristics of the data and distorts them to enforce privacy.
Although standard methods of protecting privacy based on erasing personal
information have been widely used, correlation and linkage attacks allow to re-
identify the users, even when explicitly identifying information is not present in
the released datasets [25].

Those kinds of attacks pose an even greater threat to individual privacy
when used against publicly available medical databases [14]. [15] show that us-
ing publicly available genotype-phenotype correlations, an attacker can statisti-
cally relate genotype to phenotype and therefore re-identify individuals. Publicly
available profiles in the Personal Genome Project can be linked with names by
using demographic data [32]. Also, when considering fRMI imaging data, indi-
vidual variability across individuals is both robust and reliable, thus can be used
to identify single subjects [9].

Although numerous works are focused on finding discriminative patterns
within the data [10,34], we use a Siamese neural network architecture [4] since
it allows us to learn a discriminant data embedding in an end-to-end fashion.
Contrary to the typical goal of a Siamese architecture, i.e. learning similarity,
we use it to identify discriminant parts of a pair of images and alter those parts
with minimal impact on other useful features. When both examples come from
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the same individual, this setup allows us to learn a perturbation that carefully
disguises the individual’s identity, hence protecting their privacy.

One can consider the problem of data anonymization to be conceptually simi-
lar to the idea of adversarial examples in neural network architectures [21,19,20,3,33].
In the case of adversarial examples, the adversary wants to trick the neural net-
work into misclassifying a slightly perturbed input of a given class. Similarly, our
goal is to modify the data points in such a way that the identity of the individual
corresponding to the data cannot be correctly classified. The most relevant work
is [20], where they use a Generative Adversarial Network (GAN) [13] frame-
work to create adversarial examples and use them in training to increase the
robustness of the classifier.

Similar to us, [28] analyses the trade-off between data privacy and utility.
In their work, however, privacy and utility metrics are defined based on a user-
study, where the users were asked to assess the usefulness of the anonymized
images in the context of social media distribution. The privacy, on the other
hand, was measured by first enlisting a number of attributes linked to privacy
(e.g. passport number or registration plates) and then asking the users to val-
idate if a given privacy attribute is visible in the photo or not. We argue that
this way of measuring both privacy and utility is limited to a very specific sub-
set of applications. In our work we propose fundamentally different metrics for
both privacy and utility that have backing in information theory and machine
learning.

Another relevant and recent works [33], [5] address the privatization prob-
lem using a generative adversarial approach while providing theoretical privacy-
utility trade-offs. The work of [5], which is the most similar to our work, proposes
an architecture combining Variational Autoencoder (VAE) and GAN to create
an identity-invariant representation of a face image. Their approach differs from
ours as they use an additional discriminator, which explicitly controls which
useful features of the images are to be preserved, whereas in our approach the
model has no information about other features of the images, except that it
knows whether a pair of images belongs to the same person or different peo-
ple. This is a significant contribution because in practice, one cannot expect to
know all potential applications of the privatized images. Therefore our approach
proves to be more robust towards real-life applications.

[27] presents a similar game-theoretic perspective on image anonymization.
However, the difference is that it focuses on adversarial image perturbations
(carefully crafted perturbations invisible to human), while our privatizer intro-
duces structural changes to the image. In [31], a head inpainting obfuscation
technique is proposed by generating a realistic head inpainting using facial land-
marks. On contrary, our goal is to hide the identity of a person without knowing
which part of the image is responsible for identity. Thanks to this, our framework
is more universal and has a much wider field of application, not only to hide face
identity, but also hide identity in cases where there is no prior knowledge of
which part of the image should be obfuscated. [23] and [24] are relevant to our
work and deal with a problem similar to ours. However, the formulation of the
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problem is different from ours. [23] and [24] transform an input face image in a
way such that the transformed image can be successfully used for face recogni-
tion (so the identity is preserved) but not for gender classification. Our goal is
the opposite, we want to hide identity while maintaining as much other features
as possible, without explicitly modeling the non-malicious classification tasks.
Another difference is that our model requires only identity labels. The architec-
ture of the models presented in [23] and our work are similar, however we use
Siamese discriminator what makes our approach advantageous when applied to
large datasets with thousands or even millions of people, since this architecture
reduces the output of the discriminator to a binary output rather than create
a long list of individual class predictions.

3 Method

The goal of our approach is to develop a privatizer that converts an input image
into its privatized version in such a way that: (1) the privacy of the subject is
preserved by making sure that the identifying features are hidden, (2) the utility
of the original image is maintained by preserving the non-identifying features
that are vital for other machine learning tasks, and (3) the privacy-utility trade-
off can be adjusted.

3.1 Proposed approach

To enforce the above conditions, we will use a custom neural network architec-
ture, dubbed Siamese Generative Adversarial Privatizer, that consists of two
tightly coupled models: a generator G(θg) and a discriminator D(θd). This cou-
pling is inspired by Generative Adversarial Networks (GANs) [13]. Two neural
networks compete with each other: the discriminator tries to predict the identity
of the person in the image, while the generator tries to generate such an image
which fools the discriminator and thus hides the identity of the person.

We use a Siamese architecture [4] for the discriminator. This allows us to
extract discriminative and identifying features from images. More importantly,
this architecture reduces the output of the discriminator to a single value (from
0 to 1) rather than create a long list of individual class predictions, an approach
which would be prohibitive when applied to large datasets with thousands or
even millions of people. In this case, we use pairs of images (instead of single
images) to train the neural network, and the goal of the Siamese discriminator
is to classify whether the two images belong to the same person or to different
people.

Furthermore, the above problem is subjected to a distortion constraint, which
ensures that the privatized images are not too different from the original images.

We did not use L2 since it is sensitive to small changes (e.g. shift, rota-
tion, etc.) which do not significantly affect the content of the image. Instead
we chose SSIM (structural similarity index) [35] which is sensitive to the struc-
tural changes of images, not pixel-by-pixel differences like L2 [36]. We enforce
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Fig. 2. Overview of our Siamese Generative Adversarial Privatizer model. The genera-
tor acts as a privacy filter, which hides the identity of the person in the original images.
The Siamese discriminator recognizes whether the person in the privatized image is the
same person as in the reference image.

Fig. 3. Discriminator’s architecture. We use a Siamese neural network to verify the
identities of people in the images. The discriminator classifies whether a pair of images
belongs to the same person or to different people. We get the output from the range
between 0 and 1 applying distance-based loss function to the output of the last fully
connected layer of the Siamese discriminator.

a constraint on SSIM which allows us to control the level of distortion added
to protect identity, and thus ensure that the quality of privatized images is not
substantially degraded. The architecture overview can be seen in Fig. 2.

3.2 Architecture

Our discriminator is a Siamese convolutional neural network, which consists of
two identical branches with shared weights, as shown in Fig. 3. Each branch
consists of 3 blocks of the following form: (1) Convolutional layer (mask 3 × 3,
stride=1, padding=0), (2) Leaky rectified linear unit (α = 0.1), (3) Batch nor-
malization, (4) Dropout (p = 0.2). The blocks are followed by 2 dense layers (500
neurons, leaky rectified linear unit, α = 0.1) and an output layer (15 neurons). A
discriminator network converts two input images to two output representations
(embeddings) D(X1, X2)→ (o1, o2).



Siamese Generative Adversarial Privatizer for Biometric Data 7

Fig. 4. Generator’s architecture. We use Variational Autoencoder-like architecture to
generate a privatized image in a context-aware manner based on the original image.
At the bottleneck of the generator we get a compressed representation of the image
without identity features, and thanks to the bypasses between the layers we preserve
other useful features of the original image.

The generator network, as presented in Fig. 4, consists of two parts: the
encoding part and the decoding part. The encoder follows the typical architecture
of a convolutional neural network. It consists of 5 blocks of the following form:
(1) Convolutional layer (mask 4 × 4, stride=2, padding=1), (2) Leaky rectified
linear unit (α = 0.1), (3) Batch normalization. At each downsampling step we
double the number of feature channels.

The decoder consists of 5 blocks of the following form: (1) Transpose convo-
lutional layer (mask 4× 4, stride=2, padding=1), (2) Leaky rectified linear unit
(α = 0.1), (3) Batch normalization, (4) Dropout (p = 0.5). At each upsampling
step we halve the number of feature channels. Also we concatenate the feature
maps of the decoder part with the corresponding feature map from the encoder
part (these are bypasses). Last deconvolutional layer is followed by a hyperbolic
tangent activation function.

A noise matrix Z is added to the bottleneck part of the generator, i.e. to the
latent space variable representing input image in a low-dimensional space. We
use a noise matrix instead of a vector, as we do not use a standard fully-connected
layers in our generator and retain convolutional layers instead. The output of
generator network is a privatized version of original image: G(Z, I)→ Ĩ .

3.3 Training

When iterating over training dataset we get tuples: (Ii, I
′

i , li), where Ii and I
′

i is
a pair of images and li is a binary label where li = 0 if the images have the same
identity and li = 1 for different identities. There are two types of pairs in the
training set. Firstly, when the generator is turned off, Ii, I

′

i are images from the
original training set. Secondly, when the generator is turned on, Ĩi = G(Zi, Ii)
is the privatized version of the image Ii from the original training set. I

′

i is the
reference image, also from the original training set. In both cases mentioned



8 W. Oleszkiewicz, P. Kairouz, K. Piczak, R. Rajagopal, T. Trzciński

above we use stratified random sampling in order to balance two classes: l = 0
and l = 1.

The discriminator D takes a pair of images I , I
′

and outputs a probability
that both images come from the same person, i.e. l = 0, based on a distance-
based metric:

D(I , I
′
)→ 1 + e−m

1 + ed(o,o
′ )2−m

= P (Isim.∼ I
′
)

where m is a predefined margin and d(o, o
′
) is an Euclidean distance between

embeddings o and o
′

in the last fully connected layer of the discriminator. Given
this formulation of the discriminator we use a cross entropy loss for training:

L(l,D(I , I
′
)) = −(1− l) logD(I , I

′
)− l log

(
1−D(I , I

′
)
)

We train our model similarly to GAN. When the generator training is frozen,
our goal is to train the discriminator to recognize whether a pair of images
belongs to the same person or to different people. When the generator is trained,
there is a minmax game between the generator and the discriminator in which
the generator is trying to fool the discriminator and generate an image that hides
the identity of the subject. The training equation for our privatization task is:

min
D

max
G

1

N

N−1∑
i=0

L(li, D(Ii, I
′

i )) +
1

N

N−1∑
i=0

L(0, D(I
′

i , G(Zi, Ii)))

Furthermore, the above minimax optimization problem is subject to the follow-
ing critical constraint: 1

N

∑N−1
i=0 d(Ii, G(Zi, Ii)) < δ, where d(x, y) is a distortion

metric and δ is a distortion threshold. The distortion constraint is used to limit
all the other image changes except for hiding identity and therefore the utility
of the images is preserved. We use Structural Similarity Index as the distor-
tion metric. The above constraint can be incorporated into the main minimax
objective function as follows:

min
D

max
G

N−1∑
i=0

L(li, D(Ii, I
′

i )) +

N−1∑
i=0

L(0, D(I
′

i , G(Zi, Ii))) + λ

N−1∑
i=0

d(Ii, G(Zi, Ii))

(1)
Our Siamese Generative Adversarial Privatizer network is trained for 100

epochs using ADAM optimizer with β1 = 0.9 and β2 = 0.999.

4 Results

In this section, we present the results of evaluation of our method. We first
present the datasets and evaluation metrics. Then we show qualitative and quan-
titative results of our evaluation that confirm usefulness of our approach in the
context of data privatization.
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4.1 Datasets

Fingerprints To validate how well our method performs in terms of identity
privatization, we evaluate it on a dataset of fingerprints. Although the main pur-
pose of fingerprint datasets is to identify people and therefore their privatization
may not be needed in their real-life use cases, we treat this dataset as our toy
example and evaluate how well we can hide the privacy of the fingerprint owner.
Since there exists a trade-off between the privatization and the utility of the re-
sulting data, we refer to a proxy task of finger type classification to validate how
useful our privatization method is. In other words, we try to classify the type of
the finger (e.g. middle finger, index finger, ring finger) while gradually increasing
the privacy of the dataset. Sec. 4.4 presents the results of this experiment.

We use NIST 8-Bit Gray Scale Images of Fingerprint Image Groups [26].
This database contains 4000 8-bit grayscale fingerprint images paired in couples.
Each image is 512-by-512 pixels with 32 rows of white space at the bottom. We
use only one image of each pair in our experiments. The dataset contains images
for 2000 individuals. For each person there are two different fingerprint shots of
the same finger (denoted as: f , s). Our method requires pairs of images as input.
In each epoch the dataset is iterated over 4000 pairs of images.

For the first half of the pairs when index of a pair is i < 2000 we return a
label l = 0 and a pair of images (f , s) belonging to the person with ID = i.

For the second half of the pairs when index i >= 2000 we return a label l = 1
and two images. First image is image f of person with ID = i − 2000. Second
image is an image (f or s) of a different person (selected at random).

This way we have a 50%/50% split over similar/dissimilar pairs and the
dataset loader is quasi-deterministic (for a given index i the first image is guar-
anteed to be constant).

Animated faces The second dataset that we use is FERG dataset [2]. FERG
is a dataset of cartoon characters with annotated facial expressions. It contains
55769 annotated face images of six characters. The images for each identity
are grouped into 7 types of facial expressions, such as: anger, disgust, fear, joy,
neutral, sadness and surprise.

In each epoch the dataset is iterated over 10000 pairs of images. For the first
half of the pairs we use different randomly selected images of the same person.
In this case l = 0. For the second half of the pairs we use randomly selected
images of different people. In this case l = 1. This way we have a 50%/50% split
over similar/dissimilar pairs and the dataset loader is quasi-deterministic.

4.2 Evaluation metrics

To evaluate the performance of our SGAP model and show that it learns privacy
schemes that are capable of hiding biometric information even from computa-
tionally unbounded adversaries, we propose computing the mutual information
between: (a) X = (X1, X2) where X1 is a privatized image and X2 is an original
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image, and (b) Y where Y = 0 when X1 and X2 belong to the same person and
Y = 1 when they belong to different people. X1 is privatized using the scheme
that is learned in a data-driven fashion using SGAP. By Fano’s inequality, if
I(X;Y ) is low then Y cannot be learned from X reliably (even under computa-
tionally infinite adversaries) [6]. In other words, if I(X;Y ) is sufficiently small,
there’s no way we can reliably learn whether or not a privatized image belongs
to the same person in another non-privatized image. This ensures that privacy
is guaranteed in a strong sense.

In practice, we do not have access to the joint distribution P (X,Y ). We
instead have access to a dataset of i.i.d observations D = {(Xi, Yi}ni=1}. Here,
the Xi’s are computed after the SGAP training phase is over by applying the
learned privacy scheme on a separate test set. We are thus interested in empir-
ically estimating I(X;Y ) from D. We will call this estimate “empirical mutual
information” and denote it by Î(X;Y ). To compute Î(X;Y ), we can use the
following formula:

Î(X;Y ) = Ĥ(X)− Ĥ(X|Y )

where Ĥ(X) and Ĥ(X|Y ) are the empirical entropies of X and X given Y . To
compute these empirical entropies, we use the Kozachenko-Leonenko entropy
estimator [11] which we briefly explain next. Letting Ri = minj,j 6=i ‖Xi −Xj‖,
for j = 1, . . . , n, we get

Ĥ(X) =
1

n

n∑
i=1

log
(
(n− 1)Rd

i

)
+ constant

=
d

n

n∑
i=1

logRi +
1

n

n∑
i=1

log(n− 1) + constant

where d is the dimension of X, i.e. Xi ∈ Rd. Assuming we have a two-class prob-
lem (Y = 0 for same identities, Y = 1 for different identities), the conditional
entropy is given by

Ĥ(X|Y ) = Ĥ(X|Y = 0)P̂ (Y = 0) + Ĥ(X|Y = 1)P̂ (Y = 1)

Notice that P̂ (Y = 0) = n0

n , P̂ (Y = 1) = n1

n , where n0 and n1 are the counts of
samples with label Y equals 0 and 1 respectively. We divide sample X into two
partitions. Letting i1, i2, . . . , in0

be the indices corresponding to Yi = 0, we have a
set X0 = {Xi1 , Xi2 , . . . , Xin0

}. Automatically we have i′1, i
′
2, . . . , i

′
n0

, the indices
of samples associated with Yi = 1. Thus, we get X1 = {Xi′1

, Xi′2
, . . . , Xi′n1

}.
Therefore we calculate the nearest neighbor distance for each sample within the
particular set as follows:

Rik = min
l 6=k,l=1,...,n0

‖Xik −Xil‖ Ri′k
= min

l 6=k,l=1,...,n1

‖Xi′k
−Xi′l

‖
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Ĥ(X|Y = 0) =
1

n0

n0∑
k=1

log
(
(n0 − 1)Rd

ik

)
+ constant

Ĥ(X|Y = 1) =
1

n1

n1∑
k=1

log
(
(n1 − 1)Rd

i′k

)
+ constant

Then the empirical mutual information can be expressed as

Î(X,Y ) = Ĥ(X)−
(
Ĥ(X|Y = 0)P̂ (Y = 0) + Ĥ(X|Y = 1)P̂ (Y = 1)

)
=

1

n

n∑
i=1

log
(
(n− 1)Rd

i

)
+

−

(( 1

n0

n0∑
k=1

log
(
(n0 − 1)Rd

ik

))n0
n

+
( 1

n1

n1∑
k=1

log
(
(n1 − 1)Rd

i′k

))n1
n

)

To estimate values of Rik and Ri′k
we use L2 norm between image pixels

projected to a 3-dimensional space via t-SNE [22]. We reduce the dimensionality
to increase the efficiency of computation, but our metric remains agnostic to
image distance calculation and other methods can also be used here.

The second approach to quantify privacy is by measuring an identity mis-
classification rate. We measure what percentage of privatized images effectively
fool our Siamese discriminator.

To quantify utility of privatized dataset we measure accuracy of the proxy
classification task (finger type classification for fingerprint dataset and facial ex-
pression classification for faces dataset). More precisely, we evaluate how good in
terms of accuracy a separate independent method can be trained for using a pri-
vatized dataset. We use fine-tuned ResNet architecture, pre-trained on ImageNet
without freezing. In addition we split the dataset into training and validation.
The accuracy is measured using k-fold validation (k = 4).

4.3 Qualitative results

In this section, we present the qualitative results of our evaluation, demonstrating
the ability of our network to increase the privacy of input data.

Fig. 5 and 6 show sample results obtained as an output of our privatization. In
Fig. 6 we see that the identities of people have been hidden, while other useful
features, in this case facial expressions, have been preserved. Fig. 7, 8 and 9
illustrate the trade-off between utility and privacy while tuning λ distortion
metric constraint. We see that by tuning the λ parameter we can adjust the
level of privacy and utility, finally finding the optimal value for both privacy and
utility.
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Fig. 5. A toy example of how our privatization method can hide identities of the finger-
print owners. Original fingerprints in the upper row. Fingerprints with added artifacts
that fool identity discriminator in the middle row. Structural Similarity difference [35]
of the original and privatized images is presented in the bottom row. Our Siamese
Generative Adversarial Privatizer learns to locate discriminant image features, such
as fingerprint minutiae, and substitutes them with anonymizing artifacts. Although in
practice fingerprints are used for person identification, we validate if privatized images
can be useful (i.e. if they can retain utility) for a proxy task of finger type classifica-
tion. Since our method does not add noise arbitrarily across the image, but only focuses
on hiding sensitive personal information, the resulting dataset can be published and
used by machine learning for other tasks, e.g. finger type classification or skin disease
detection.

Fig. 6. Original cartoon faces in the upper row. Privatized versions of cartoon faces
in the bottom row. Our Siamese Generative Adversarial Privatizer learns to hide the
identity of the people, while other important image features, such as facial expression
remain intact.

4.4 Quantitative results

To obtain quantitative results we train our SGAP model with different values of
maximal distortion constraint λ (see Eq. 1) in order to adjust the privacy level
of the dataset. The goal of our generator is to add such noise to the latent space
that privatized image fools the discriminator, which the discriminator in turn
has to verify if the pair of images comes from the same person. After SGAP is
trained, the generator part can be used to privatize datasets.
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Fig. 7. Too much privacy, utility is not preserved. Original cartoon faces in the upper
row. Privatized versions of cartoon faces in the bottom row. Our model has been tuned
too much towards ensuring privacy, so that the utility of the images has not been
preserved, facial expressions are hard to recognize.

Fig. 8. Not enough privacy, utility is preserved. Original cartoon faces in the upper
row. Privatized versions of cartoon faces in the bottom row. Our model has been tuned
too much towards preserving utility, so that the identities of the people in the images
are not hidden, only minor changes have been added to the images.

Fig. 9. Images in the first column are the original ones, next there are privatized images
generated for different values of distortion constraint λ ∈ {10, 8, 6, 4, 2, 1, 0.7}. Original
images of different identities collapse into an anonymous identity with the expression
preserved from the original image.

To measure the utility of the privatized fingerprints dataset, we refer to a
proxy task of finger type classification. Although in fingerprints are typically
used to identify the identity of an individual, in our case we use the proposed
privatization method to hide the identity and anonymize the dataset. The ob-
jective of this experiment is to evaluate how increasing data privacy effects the
utility of the resulting dataset when used as training data for a machine learn-
ing algorithm. Hence, we use a proxy machine learning task, finger type classi-
fication. To measure the utility of the privatized cartoon faces dataset, we use
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facial expression classification as machine learning task. As a classifier, trained
on privatized datasets, we use fine-tuned ResNet architecture, pre-trained on
ImageNet without freezing. For each dataset generated using different maximal
distortion constraint, we calculate classification accuracy and quantify the pri-
vacy by estimation of mutual information (fingerprint dataset) or using identity
misclassification rate (faces dataset).

Fig. 10 and 11 show the results. In both cases we see a significant drop in pri-
vacy metric, while for the same range of parameters, the accuracy of the classifier
remains stable, indicating that the utility of the dataset is not decreased.

5 Conclusions

We presented the Siamese Generative Adversarial Privatizer (SGAP) model for
privacy-preserving of biometric data. We proposed a novel architecture combin-
ing Siamese neural network, autoencoder, and Generative Adversarial Network
to create a context-aware privatizer. Experimental results on two public datasets
demonstrate that our approach strikes a balance between privacy preservation
and dataset utility.
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Fig. 10. Graph of mutual information es-
timation and the accuracy of a classi-
fier trained with fingerprint dataset pri-
vatized with different maximal constraint
distortion thresholds. In green the region
where the utility of dataset is preserved
while the likelihood of classifying the pri-
vatized version of the image as belong-
ing to a given person is reduced. This
result proves that by using our priva-
tization method we are able to signifi-
cantly increase the privacy of the biomet-
ric dataset, while not reducing its utility
for a proxy task of finger type classifica-
tion.
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Fig. 11. Graph of identity misclassifica-
tion rate and the accuracy of a classifier
trained with cartoon faces dataset priva-
tized with different maximal constraint
distortion thresholds. In green the region
where the utility of dataset is preserved
while the likelihood of classifying the pri-
vatized version of the image as belong-
ing to a given person is reduced. This
result proves that by using our priva-
tization method we are able to signifi-
cantly increase the privacy of the biomet-
ric dataset, while not reducing its utility
for a task of facial expression classifica-
tion.
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