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ABSTRACT

This paper evaluates the potential of convolutional neural
networks in classifying short audio clips of environmental
sounds. A deep model consisting of 2 convolutional layers
with max-pooling and 2 fully connected layers is trained on
a low level representation of audio data (segmented spectro-
grams) with deltas. The accuracy of the network is evaluated
on 3 public datasets of environmental and urban recordings.
The model outperforms baseline implementations relying on
mel-frequency cepstral coefficients and achieves results com-
parable to other state-of-the-art approaches.

Index Terms— environmental sound, convolutional neu-
ral networks, classification

1. INTRODUCTION

Convolutional neural networks date back as far as to the
1980s [1–3], yet only recently have they been adopted as
a method of choice for various object classification tasks. The
work of Krizhevsky et al. [4] marked a turning point in large
scale visual recognition [5] in 2012. Since then, by replacing
techniques relying on manually engineered features, convo-
lutional neural networks allowed for significant progress in
numerous pattern recognition tasks, including classification
of traffic signs [6], house numbers [7, 8] and handwritten
digits [9], pedestrian detection [10], and electron microscopy
image processing [11].

Although primarily used in visual recognition contexts,
convolutional architectures have been also successfully ap-
plied in speech [12–18] and music analysis [19, 20]. These
efforts have shown that approaches taking advantage of data
locality can provide viable solutions to problems encountered
in other domains. A thorough coverage of current deep learn-
ing methods and their applications in various contexts, includ-
ing speech and audio processing, can be found in recently
published books discussing this topic [21–23].

At the same time, classification of environmental sounds
(everyday audio events that do not consist of music or speech
data and are often more diverse and chaotic in their structure)
is still predominantly based on applying general classifiers

Input layer Convolutional layer Pooling layer

convolution with square kernel
+ non-linear activation

max-pooling

Fig. 1. A schematic visualization of a typical convolution-
pooling operation performed on the input data.

(Gaussian mixture models, support vector machines, hidden
Markov models) to manually extracted features, such as mel-
frequency cepstral coefficients. Recent reviews pertaining to
this subject [24, 25] present a detailed analysis of the most
common approaches. The introduction of deep learning tech-
niques in this context has slowly begun in the last two years.
However, these efforts are still mostly limited to analyzing
highly pre-processed acoustic features [26–30].

This contrast in the development of different fields raises
a research question which has not yet been widely addressed.
Can convolutional neural networks be effectively used in clas-
sifying environmental and urban sound sources? The goal of
this paper is to provide an answer to this question.

2. CONVOLUTIONAL NEURAL NETWORKS

In essence, convolutional neural networks are a simple exten-
sion of the multilayer perceptron model. However, their archi-
tectural differences have significant practical consequences.

2.1. Layer architecture

A typical convolutional neural network consists of a number
of different layers stacked together in a deep architecture:
an input layer, a group of convolutional and pooling layers
(which can be combined in various ways), a limited number of
fully connected hidden layers, and an output (loss) layer. The
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actual difference, when compared to the multilayer percep-
tron, lies in the introduction of a combination of convolution
and pooling operations (depicted in Figure 1).

A convolutional layer introduces a special way of orga-
nizing hidden units which aims to take advantage of the local
structure present in the two-dimensional input data (mostly,
but not limited to, images). Each hidden unit, instead of
being connected to all the inputs coming from the previous
layer, is limited to processing only a tiny part of the whole
input space (e.g. small 3 × 3 blocks of pixels), called its
receptive field. The weights of such a hidden unit create
a convolutional kernel (filter) which is applied to (tiled over)
the whole input space, resulting in a feature map. This way,
one set of weights can be reused for the whole input space.
This is based on the premise that locally useful features will
be also useful in other places of the input space - a mechanism
which not only vastly reduces the number of parameters to
estimate, but improves robustness to translational shifts of the
data. A typical convolutional layer will consist of numerous
filters (feature maps).

Further dimensionality reduction can be achieved through
pooling layers, which merge adjacent cells of a feature map.
The most common pooling operations performed are taking
the max (winner takes all) or mean of the input cells. This
downsampling further improves invariance to translations.

2.2. Rectified Linear Units

Traditionally, logistic sigmoid and hyperbolic tangent have
been used as typical non-linear activation functions in a mul-
tilayer perceptron setup. Recent implementations of deep
architectures have unequivocally replaced them with alterna-
tive solutions. One of the most common is the application
of Rectified Linear Units (ReLUs), which use the following
activation function:

f(x) = max(0, x) (1)

ReLUs have several advantages over traditional units:
faster computation and more efficient gradient propagation
(they do not saturate as is the case with sigmoid units),
biological plausibility (one-sidedness) and sparse activation
structure [31], while still retaining sufficient discriminatory
properties despite their simplicity. One of their drawbacks
is that depending on the state of the random weight
initialization, multiple units may prematurely fall into the
“dead zone” - outputting a constant gradient of zero. For
this reason, alternatives with a non-zero slope such as
Leaky Rectified Linear Units have been suggested [32], and
empirical results seem to confirm their usefulness [33].

2.3. Dropout learning

Deep neural architectures have a natural tendency to over-
fitting. Even in convolutional neural networks, where the
quantity of parameters is reduced through weight sharing, the

number of estimated values is most of the times bigger than
the number of training cases by an order of magnitude. This
can result in poor out-of-sample generalization.

One way to tackle this problem was introduced in the form
of dropout learning [34]. The concept is quite simple, yet
highly effective. In each training iteration every hidden unit
is randomly removed with a predefined probability (originally
50%), and the learning procedure continues normally. These
random perturbations effectively prevent the network from
learning spurious dependencies, and creating complex co-
adaptations between hidden units. This way big groups of
neurons become helpful not only in the context of other neu-
rons. Architecture averaging introduced by dropout tries to
ensure that each hidden unit learns feature representations that
are generally favorable in producing the correct classification
answer.

3. SOUND CLASSIFICATION

3.1. Datasets

One of the main problems with training deep neural architec-
tures in a supervised manner is the amount of computational
effort and labeled data required for efficient learning. While
the former is in some part addressed on a universal basis by
hardware advances and general-purpose GPU computing, the
latter is very domain-dependent.

Unfortunately, publicly available datasets of environmen-
tal recordings are still very limited - both in number and
in size1. This is quite understandable, considering the high
cost of manual annotation. Although the situation gradually
improves with the introduction of new collections of record-
ings [35, 36], it is still one of the major hindrances to the
development of new data-intensive approaches in this field.
This is especially important, since the performance of super-
vised deep models is strongly influenced by the size of the
dataset available for learning. Therefore, the original research
problem has to be extended in this context - can convolutional
neural networks be effectively used for environmental sound
classification with limited amount of training data?

To answer this question, three publicly available datasets
were selected for evaluation of the models: ESC-50 [36],
ESC-10 [36] and UrbanSound8K [35].

The ESC-50 dataset is a collection of 2000 short (5 sec-
onds) environmental recordings comprising 50 equally bal-
anced classes of sound events in 5 major groups (animals,
natural soundscapes and water sounds, human non-speech
sounds, interior/domestic sounds, and exterior/urban noises)
prearranged into 5 folds for comparable cross-validation. It is
a demanding compilation with baseline approaches (classi-
fication with random forest ensemble using features derived
from mel-frequency cepstral coefficients and zero-crossing
rate) achieving a mean accuracy of 44%, and recognition

1 A list of datasets in this field is currently maintained by Toni Heittola at:
http://www.cs.tut.fi/∼heittolt/datasets [last accessed: July 30, 2015].
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Fig. 2. Model architecture for the short segment variation.

accuracy of untrained human participants at approximately
81% [36].

ESC-10 is a less complex standardized subset of 10 classes
(400 recordings) selected from the ESC-50 dataset (dog
bark, rain, sea waves, baby cry, clock tick, person sneeze,
helicopter, chainsaw, rooster, fire crackling). Using the same
implementations of the baseline classifier yields an accuracy
of 73% (5 fold cross-validation), with respective human
benchmark of 96% [36].

UrbanSound8K is a collection of 8732 short (less than
4 seconds) excerpts of various urban sound sources (air con-
ditioner, car horn, playing children, dog bark, drilling, en-
gine idling, gun shot, jackhammer, siren, street music) pre-
arranged into 10 folds. Based on this dataset, the work of
Salamon and Bello [37] compares a baseline system with
unsupervised feature learning performed on patches of PCA-
whitened log-scaled mel-spectrograms. The average classifi-
cation accuracy obtained is respectively 68% for the baseline
and 73.6% for the best performing variant of the evaluated
system.

3.2. Experiment setup2

Training a convolutional neural network involves a lot of
decisions that have to be made regarding both the architec-
ture (format of the input data, number and size of layers,
amount of spatial pooling, filter dimensions) and learning hy-
perparameters (learning rate, momentum, batch size, dropout

2 Source code for study replication is available as an IPython notebook at:
https://github.com/karoldvl/paper-2015-esc-convnet.

probability, amount of regularization applied). This selection
process is still mostly based on heuristics, especially when
entering uncharted territories of new applications.

Due to the time required for training a complete model,
exhaustive evaluation of all potential combinations was infea-
sible. Therefore, the selection of the most promising model
had to be based on limited validation (single fold) performed
for most significant factors (number of layers/filters, filter
shape, learning rate, dropout probability). The final system
that was evaluated in detail can be described through the
following process depicted in Figure 2:

• The ESC-50 and ESC-10 training datasets were augmented
by applying random time delays to the original record-
ings. Additionally, class-dependent time-stretching and
pitch-shifting was performed on the ESC-10 training set.
10 augmentations were created for each clip of the ESC-
10 dataset and 4 variants for the ESC-50. Simple aug-
mentation techniques proved to be unsatisfactory for the
UrbanSound8K dataset given the considerable increase
in training time they generated and negligible impact on
model accuracy.

• Log-scaled mel-spectrograms were extracted from all
recordings (resampled to 22050 Hz and normalized) with
window size of 1024, hop length of 512 and 60 mel-bands,
using the librosa implementation3.

• As learning on whole clips was too limiting on the number
of examples available for training, the spectrograms were
split into 50% overlapping segments of 41 frames (short
variant, segments of approx. 950 ms) or 101 frames with
90% overlap (long variant, approx. 2.3 s), discarding silent
segments in the process.

• Segments (e.g. 60 rows/bands × 41 columns/frames) were
provided together with their deltas (computed with default
librosa settings) as a 2-channel input to the network.

• The first convolutional ReLU layer consisted of 80 filters
of rectangular shape (57×6 size, 1×1 stride) allowing
for slight frequency invariance. Max-pooling was applied
with a pool shape of 4×3 and stride of 1×3. A small
selection of learned filters is presented in Figure 3.
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Fig. 3. A selection of filters learned by the first convolutional
layer.

3 librosa: v0.3.1 library by B. McFee et al., DOI: 10.5281/zenodo.12714
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• A second convolutional ReLU layer consisted of 80 filters
(1×3 size, 1×1 stride) with max-pooling (1×3 pool size,
1×3 pool stride).

• Further processing was applied through two fully con-
nected hidden layers of 5000 ReLUs each and a softmax
output layer.

• Training was performed using pylearn2 [38] implementa-
tion of mini-batch (stochastic) gradient descent with even
shuffled sequential batches (batch size of 1000), Nesterov
momentum of 0.9 [39], 0.001 L2 weight decay for each
layer and 0.5 dropout probability for fully connected layers
and the first convolutional layer.

• Training procedure was stopped after 300 epochs for the
short segment variant (learning rate of 0.002) and 150
epochs for the long variant (learning rate 0.01).

• Final predictions for a clip were generated using either
a majority-voting scheme or by taking into account the
probabilities predicted for each segment.

3.3. Results

The model was evaluated in a 5-fold (ESC-10 and ESC-50)
and 10-fold (UrbanSound8K) cross-validation regime with
a single training fold used as an intermittent validation set.
Figure 4 presents classification accuracy achieved by variants
of the evaluated model and baseline implementations, with
mean accuracy across folds indicated by diamond marks.

In all cases models based on a convolutional neural net-
work performed better than respective implementations us-
ing manually-engineered features, especially when classify-
ing audio events from more varied categories of the ESC-
50 dataset (baseline accuracy: 44%, best network: 64.5%).
Models working on longer time scales also seemed to offer
slight improvements over variants operating on shorter seg-
ments. Unfortunately, further extensions of segment length

would most probably be counter-balanced by diminishing re-
turns due to overfitting, as they drastically reduce the effective
number of training examples. The probability-voting scheme
proved to be universally favorable as compared to a majority-
voting setup.

However, owing to the fact that the presented baselines
should be treated as most common approaches and not fine-
tuned state-of-the-art techniques, the real potential of convo-
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Fig. 5. Confusion matrix for the (LP) model evaluated on
the UrbanSound8K dataset. Classes: air conditioner (AI), car
horn (CA), children playing (CH), dog bark (DO), drilling
(DR), engine idling (EN), gun shot (GU), jackhammer (JA),
siren (SI), street music (ST). See [37] for comparison.



lutional neural networks would still require further evalua-
tion. Nonetheless, a convolutional model using long segments
and probability voting achieves results comparable to other
best performing models on the UrbanSound8K dataset (LP -
73.1%, US - 73.7%) with smaller dispersion.

The model’s confusion matrix for the UrbanSound8K
dataset (Fig. 5), when compared with its analogue for the
unsupervised technique presented by Salamon & Bello [37],
shows some complementary characteristics. The convolu-
tional network performs considerably better in recognizing
specific classes (air conditioner, car horn, playing children,
dog bark) while at the same time performing relatively poor
for sounds with short-scale temporal structure (drilling, en-
gine idling, jackhammer). This could indicate that ensem-
ble averaging of different approaches (both convolutional and
non-convolutional) may yield even more efficient systems.

4. SUMMARY

The goal of this paper was to evaluate whether convolutional
neural networks can be successfully applied to environmental
sound classification tasks, especially considering the limited
nature of datasets available in this field.

It seems that they are indeed a viable solution to this
problem. Conducted experiments show that a convolutional
model outperforms common approaches based on manually-
engineered features and achieves a similar level as other fea-
ture learning methods. Although, taking into consideration
much longer training times, the result is far from ground-
breaking, it shows that convolutional neural networks can be
effectively applied in environmental sound classification tasks
even with limited datasets and simple data augmentation.
What is more, it is quite likely that a considerable increase
in the size of the available dataset would vastly improve the
performance of trained models, as the gap to human accuracy
is still profound.

One of the possible questions open for future inquiry is
whether convolutional neural networks could be effectively
used in ensembles with other less complex models, as they
seem to concentrate on distinct aspects of sound events.
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